
This course focuses on the React.js framework for JavaScript. Defending React.js takes a look at industry best
practices for defending against Cross-site Scripting (XSS), broken authentication, Cross-site Request Forgery (CSRF),
and other potential issues such as vulnerable libraries and components.

Defending React.js was created for developers familiar with JavaScript and with limited experience in
application security. This course focuses on best practices for addressing the primary threats against
applications using the open source library React.js for JavaScript.

COPYRIGHT 2021

Tailored learning - 55 minutes total

Course Learning Objectives

Description

Audience Time Required

React Developers

RCT201 - DEFENDING REACT RCT201 - DEFENDING REACT

COPYRIGHT 2021

Course Outline

3. Broken authentication

• Intro to Authentication
• Intro to Auth0
• Introduction to JWT
• JWT structure
• Security flaws in JWTs
• Unsafe token generation
• Solutions
• Best practices
• Storing JWTs
• Configuration activities
• HttpOnly example
• Authentication best practices

4. Cross-site Request Forgery
(CSRF)

• Introduction to CSRF
• Impact of CSRF
• CSRF in the real world
• Code example: Attack sink
• Code example: Attack source
• XSS vs CSRF
• Synchronizer Token Pattern
• Best practices to prevent CSRF
• Example
• Fusion-plugin-csrf-protection-react

1. Introduction

• Introduction
• Why was React created?
• Why use React?
• Benefits of React
• React security
• React vulnerabilities

2. Cross-site scripting

• Introduction
• Reflected XSS
• Stored XSS
• Vulnerable code 1-4
• Client XSS
• Examples
• Vulnerable code 1-3
• About defenses
• Prevention methods
• Vulnerable components & libraries
• Code analysis

5. General best practices

• Introduction to Jscrambler
• Jscrambler integration
• What is Idle Timeout
• Implementation
• Test components: TestUtils
• Test components: Jest
• Example: Snapshot testing
• React test renderer and Jest
snapshot
• Output file
• Components with known
vulnerabilities
• CSV injection
• Malicious packages
• Improper authorization
• Arbitrary code execution (ACE)
• Prototype Pollution
• On-path attacks
• Defenses

