
1

How to
Overcome the
Challenges of

the Modern
Security Leader

DR. EDWARD AMOROSO,
CHIEF EXECUTIVE OFFICER, TAG

2

How to Overcome the Challenges of the
Modern Security Leader
EDWARD AMOROSO, CEO, TAG

Modern development teams must deal with
a set of significant cybersecurity challenges
to their applications and software. Malicious

threats, for example, are more present than ever
in the typical software development lifecycle
(SDLC) environment. This includes vulnerabilities
that arise through open-source code, outsourced
software development, supply chain complexity,
compromised insiders, and other potential sources
of malicious activity.
INTRODUCTION
Modern development teams must deal with a set of significant cybersecurity
challenges to their applications and software. Malicious threats, for example,
are more present than ever in the typical software development lifecycle (SDLC)
environment. This includes vulnerabilities that arise through open-source code,
outsourced software development, supply chain complexity, compromised insiders,
and other potential sources of malicious activity.

The team from Toronto-based vendor Security Compass has worked with software
leaders since 2004 to help them meet security and compliance requirements.
This is done via their work in enabling teams to develop software that is secure by
design, which is achieved with role-based, relevant Application Security Training
and the use of a secure coding and developer-centric threat modeling platform
called SD Elements.

A vital aspect of the work done at Security Compass has been to focus on the
more preventive aspects of SDLC-based security in line with a secure software
development philosophy called Security by Design, which ensures systems are built
securely from the beginning of the development process, minimizing the attack
surface at the planning and design phase, even before coding begins.

3

This framework involves attention to culture, principles, practice, and infrastructure – and our analyst
team at TAG Infosphere sees this as an effective means for risk avoidance during DevOps and a path
to DevSecOps. It focuses on earlier detection, vulnerability management, and countermeasures as
opposed to relying on Find and Fix practices that can involve costly rework.

GETTING TO SECURE CODE
To achieve the goal of secure code, the development team must first accept the goal of building code
that is secure-by-default. This objective involves products being secure to use out-of-the-box with
little or no configuration changes necessary and security features available without additional costs.
Releasing products with vulnerabilities puts customer data at risk and drives security activities toward
responding to issues versus preventing them in the first place.

To achieve this security-by-default target state, software organizations are advised to adopt the
Security by Design approach. This will drive developers toward embedding product security tasks
throughout the software development lifecycle (SDLC). Implementing Security by Design is not a one-
size-fits-all solution, but the tenets of the approach apply generally across virtually all software projects.

HOW THIS REPORT WAS DEVELOPED
This report emerged based on an analysis being done at TAG regarding best practices in shifting the
software development process to the left in the SDLC. Such a shift is consistent with the objective of
preventing vulnerabilities and is also highly consistent with shifts to more rapid coding using tools such
as artificial intelligence (AI). Especially if code is to be created quickly, then it most certainly needs to be
correct and secure.

We thus reviewed technical materials from Security Compass, which we believe to be the most
prominent advocate for designing code securely. When we became aware of their emphasis on
Security by Design (in fact, organizing their organization and solution set around the concept), we were
excited to learn more. This report summarizes what we have learned, guided heavily by presentation
materials offered to us by Rohit Sethi, Security Compass CEO.

As shown below, the Security Compass team makes the case that shifting left during coding toward
more secure software is entirely feasible. This approach to software is important for any stakeholder
developing or depending on software to support a critical mission. In such cases, the all-too-common
approach of just waiting to be hacked so that detection and response tasks can be performed is simply
mismatched with the consequences of an attack.

GETTING STARTED: A PEN TESTING CASE STUDY
We learned during our solution analysis of Security Compass that their team has had considerable
experience supporting ethical hacking, penetration testing, and source code reviews. To illustrate, they
shared with us the story of a specific engagement with a financial services customer where the security
team’s goal was to run tests and reviews to secure backend software.

Before the engagement had even started, the Security Compass test expert was able to explain and
demonstrate confidently that he could break the customer’s software easily. The rest of the test and
review team was somewhat skeptical because their expert literally hadn’t looked at any code. The
individual was instead drawing the conclusion from experience with similar situations.

4

But sure enough, it was soon discovered that the testing team could perform arbitrary code execution
on the target software. As any cybersecurity expert will attest, the ability to perform such execution at
the discretion of the malicious attacker is a nightmare from a security perspective. It is how attackers
achieve the goal of remotely hijacking or compromising software.

The details of the vulnerability exploited involved the software system using its own proprietary
programming language. The Security Compass test team could thus inject code to run on the server.
Since this software was responsible for the back-office accounting, it was realized that financial
statements could be changed, checks could be printed, and other unauthorized transactions could be
performed.

IMPLICATIONS OF THE EXPLOIT
While this type of story is obviously common to anyone working in application security or software
development, it underscores that the root cause here was the way the software was engineered. There
was no misconfiguration or sloppy administration. Instead, the software had been designed wrong,
which implies that the design process needed to be improved. Things needed to “shift left” so to speak.

The problem, however – and this was true in the penetration testing example mentioned above as
well as many other use-cases we’ve examined at TAG over the years, is that software teams become
comfortable with and used-to their design process, and as a result, they end up using compensating
controls, usually involving monitoring, for a software security problem that could have been avoided in
the first place.

ANOTHER VULNERABILITY EXAMPLE
In 2021, U.S. Cyber Command issued an alarming public notification of potential exploitation of
commonly used software called Atlassian Confluence that required immediate patching. This is
not a typical occurrence for the US Cyber Command to issue such a warning. Luckily, most security
administrators around the world recognized the threat and dropped everything to begin patching their
systems.

Many of the readers here will recognize the Common Vulnerability Exposures (CVE) process and
database as central to this notification and response approach. In the case of Atlassian Confluence,
the reported issue concerned the web application and the different libraries and tools used in such
an environment. It is promising that the security community has improved sharing methods, but this is
certainly not nearly enough.

In the case cited above, the defect involved something known as an OGNL (Object Graph Navigation
Language) injection vulnerability. What was interesting is that this report followed a common pattern
that we’ve seen repeat over years and years. The OGNL injection problem was discovered in 2007 and
was a registered CVE. Readers should keep this in mind as they develop programs to utilize notifications.

And again, with the case sited above, nearly fourteen years after notification, a known CVE was being
exploited by attackers in the wild. This begs the question of why this or any other class of vulnerabilities
known for so many years could continue to exist in the wild. And this is not just true for OGNL injection.
This is also true for SQL injection. And for parameter manipulation. And for many other known problems.

5

WHAT IS THE ROOT CAUSE?
So why does this situation happen? In an ideal world, we would expect to identify the potential software
weaknesses for a given product, and then these would be avoided through the actions of security
teams, developers, and administrators. If you’re building a web application, for example, you would
implement proper controls from the start, ensuring that no weaknesses exist, or they’re mitigated. You
would have validated the existence of such controls.

In the example above, there was no good organizational process in place to mitigate OGNL injection
because there had been no systematic means in the software process to address when there would
be potential security weaknesses. Had such a process been in place, then this would have offered a
means to implement a suitable control to mitigate the known vulnerability being exploited.

The good news is that the current state of software best practice is not completely devoid of
cybersecurity. One often finds DevSecOps diagrams that show an overlay of static analysis, dynamic
analysis, and penetration testing onto the standard processes included in modern software
development. This might include commercial or open-source scanning tools, for example. This is a
promising start.

The problem with this overlay method, however, is that very little happens systematically in the planning,
design, and development phases to address security until the code is written, compiled, and then used
to search for vulnerabilities through static or dynamic analysis. That is largely where the state of the
industry is – namely, dealing with software security problems after they are introduced into code.

IMPROVING SOFTWARE PROCESS SECURITY
So, as we’ve suggested, the current development lifecycle process for software security involves running
a series of tests to find vulnerabilities in code. It does not, however, typically involve taking preventive
steps to avoid these problems from being introduced to the software in the first place. As one might
expect, there are quite a few issues and challenges that result from this more reactive approach.

First, there’s an unnecessary cyber risk the results from allowing vulnerabilities to enter the code and
then trying to find them after the fact. On average, such detections can take hundreds of days (or
more). Recent empirical studies from organizations such as NTT Security and White Hat Security have
suggested that 149 days is a typical average to find and fix a critical software risk issue.

Second, fixing discovered software vulnerabilities often isn’t trivial or even straightforward. Development
teams have many priorities, so critical vulnerabilities deployed to production environments can also
take roughly 149 days to fix, during which time they are exploitable. Perhaps there are compensating
controls that mitigate the impact. But this is not the most desirable situation.

A third issue is that there are not enough application security experts to support all the developers in
most organizations. The ratio, in the experience shared with us by the team at Security Compass, is one
to a hundred. And the case could be made in many companies that the scale is more like one to five
hundred or even a thousand. So, there is not enough expertise, and it’s tough (and expensive) to hire
this kind of expertise.

Finally, it’s worth pointing out the rising cost of rework after discovering security flaws. That is, in general,
the later one finds an issue in the software process, the harder it is to fix. This is because there are just
more remedial steps that must be taken, and there’s more impact to the change, which explains that
there are 149 days on average to fix a vulnerability. Again, the goal should be to prevent problems from
occurring in the first place.

6

GETTING STARTED WITH SECURITY BY DESIGN
We hear many security experts beginning to talk today about the desirable process of shifting left.
What they mean is the use of test methods such as static analysis earlier in the process. For example, a
programmer writes code, scanners are run early in the process, vulnerabilities are found early, and they
get fixed. This is certainly better than finding these problems later in the process.

But readers should recognize that this security process could shift even further left. It could start in the
design process, then the vulnerability will never have occurred in the first place, and that is by far the
cheapest and most proactive way to address it. And this has significant implications because the cost
of breaches is increasing. Regulatory changes are one driver of this increase.

In Canada, for example, Security Compass shared with us the details of a new bill being put in place
to levy fines for breaches. In Europe, as you probably know, these fines are reaching record levels for
security and privacy breaches as defined by the EU Cyber Resiliency Act. There are many other new
laws around the world that are being set up to address risk by increasing fines to companies who do
not avoid vulnerabilities.

This is a tough situation, however, because most chief information security officers (CISOs) are now
largely saying that security breaches are inevitable and that they cannot be prevented. This is hard
to argue, given all the breaches that occur, but the truth is that breaches are viewed as inevitable
because there is so much vulnerable software. We try to reinforce this message with our TAG customers
every day.

Let’s suppose you have built software, and there’s a breach because of a vulnerability in that software.
The correct question is to ask what you did – or what you might have done – to secure that software.
This is really where industry best practices become important. Today, this best practice is to generally
ignore security during the design phase and simply show that you’ve tested for it.

This approach might help from the perspective of legislation and even avoidance of fines from
a legal risk perspective. But the much better argument is that you should be integrating security
by design. You should be able to prove that you’ve been doing it so that you’re not just relying on
validation to test for security issues. Our observation is that the team from Security Compass is
leading the way in this regard.

7

IMPORTANT INFORMATION ABOUT THIS DOCUMENT
Contributors: Edward Amoroso
Publisher: TAG Infosphere Inc., 45 Broadway, Suite 1250, New York, NY 10006.
Inquiries: Please contact Lester Goodman at lgoodman@tag-cyber.com to discuss this report. You will receive a prompt response.
Citations: Accredited press and analysts may cite this book in context, including the author’s name, author’s title, and “TAG Infosphere, Inc..” Non-press and non-analysts require TAG’s prior written permission for
citations.
Disclaimer: This book is for informational purposes only and may contain technical inaccuracies, omissions, and/or typographical errors. The opinions of TAG’s analysts are subject to change without notice and should
not be construed as statements of fact. TAG Infosphere, Inc. disclaims all warranties regarding accuracy, completeness, or adequacy and shall not be liable for errors, omissions, or inadequacies.
Disclosures: Security Compass commissioned this book. TAG Infosphere, Inc. provides research, analysis, and advisory services to several cybersecurity firms that may be noted in this paper. No employees at the firm
hold any equity positions with the cited companies.
TAG’s forecasts and forward-looking statements serve as directional indicators, not precise predictions of future events. Please exercise caution when considering these statements, as they are subject to risks and
uncertainties that can affect actual results. Opinions in this book represent our current judgment on the document’s publication date only. We have no obligation to revise or publicly update the document in response
to new information or future events.
Copyright © 2024 TAG Infosphere, Inc. This report may not be reproduced, distributed, or shared without TAG Infosphere, Inc.’s written permission.

ABOUT TAG
TAG is a trusted research and advisory company that provides insights and recommendations in
cybersecurity, artificial intelligence, and climate science to thousands of commercial solution providers
and Fortune 500 enterprises. Founded in 2016 and headquartered in New York City, TAG bucks the
trend of pay-for-play research by offering unbiased and in-depth guidance, market analysis, project
consulting, and personalized content—all from a practitioner perspective.

