
Defending Python explores the tools and development practices you need to start building secure 
Python applications, such as maintaining the Python interpreter and your dependencies, managing 
packages, and using community tools. 

You’ll also look at injection attacks, which attempt to insert malicious code or commands into an 
application. Finally, you’ll see common attacks that target web applications, such as XSS, CSRF, and 
clickjacking attacks.

This course has been developed for Python and Web Application developers. It covers Python 3 
versions 3.8 and later.

COPYRIGHT 2021

Tailored learning - 50 minutes total

Course Learning Objectives

Description

Audience Time Required

Python Developers

Web Application Developers

PYT201 - DEFENDING PYTHON



PYT201 - DEFENDING PYTHON

COPYRIGHT 2021

     

Course Outline

3. Common Web Vulnerabilities

• Python web frameworks
• Start with security best practices
• Escape HTML to prevent XSS
• How XSS attacks work
• Escaping HTML
• Allowing limited markup with bleach
• Built-in XSS prevention
• Use tokens to prevent CSRF
• How CSRF attacks work
• How anti-forgery tokens work
• Built-in CSRF preventions
• CSRF defense in depth
• Use of Clickjacking
• Preventing frame-based attacks

1. Securing the Python 
Environment

• The Python environment
• Use the latest version of the
  Python interpreter 
• Checking your Python version
• Keeping track of new security risks
• Always use a virtual environment
• Anatomy of a virtual environment
• Creating a virtual environment 
• Use dependency pinning with 
  caution
• Vet your packages
• Evaluating packages
• Checking packages with Safety
• Perform static security analysis on 
  your code

2. Injection Attacks

• What is an injection attack?
• Use parameterized queries 
  with databases
• How SQL injection works
• The damage of SQL injection
• Parameterized queries
• Staying safe with SQL
• Don’t use eval()
• eval() is evil
• Other vulnerable functions
• Don’t use pickle for 
  serialization
• Use defusedxml for untrusted 
  XML
• Don’t allow shell access with 
  subprocess
• Don’t let users specify format 
  strings


