
Defending Node is comprised of four modules that cover common risks and best practices for secure
coding. In the first module, we begin with developing safe JavaScript code using linters, clarifying code
with promises, and choosing safe third-party modules. In the second module, we cover the most
common attacks that target web-facing software, using HTTP headers and TLS encryption, and hardening
your application against DoS and CSRF attacks. In module three, we explore safe ways to deal with
different types of data by securing sensitive details and preventing injection attacks in user-supplied data.
Finally, in the last module, we explore how you can secure Node in a production environment.

This course is designed for Node and Web developers who have some familiarity with Web application
security. Node is one of the most commonly used open-source Web technologies for building scalable
web applications. For this reason, it’s important to understand its security risks and how to implement
defensive coding techniques and configurations.

COPYRIGHT 2023

Tailored learning - 60 minutes total (approx.)

Course Learning Objectives

Description

Audience Time Required

Node.js Developers
Web Developers

NOD201 - DEFENDING NODE.JS

NOD201 - DEFENDING NODE.JS

COPYRIGHT 2023

Course Outline

1. Following Safe Coding
 Practices

• JavaScript in Node
• Safe JavaScript
• Checking code with ESLint
• Protecting the event loop
• Best practices for using Node
 safely
• Asynchronous promises - callback
 hell
• Asynchronous promises - solution
• Malicious packages
• Security exploits
• How malicious packages work
• Protecting packages

4. Secure Node Deployment

• Node in production
• Version policy
• Node versioning
• LTS releases
• Versioning guidelines
• Experimental features
• Locating experimental features
• The Node process
• Privileged ports
• Handling privileged ports
• Monitoring package vulnerabilities
• Monitoring application logs

2. Defending Against Web
 Attacks

• Web attacks
• Using Helmet
• HTTP headers
• Choosing headers
• Transport Layer Security
• Best practices for configuring TLS
 in Node
• HTTP Strict Transport Security
• Denial of Service attacks
• Configure a maximum request size
• Use the right server timeouts
• Avoid unbounded work
• Avoid unsafe regular expressions
• Use a rate-limiting module to
 restrict excessive requests
• Add extra protection to
 authentication pages
• Cross-Site Request Forgery attacks
• CSRF defenses
• Secure cookies
• Best practices for securing cookies

3. Dealing with Data

• Handling secrets
• Environment variables
• Configuration files
• Cloud-based secrets
• Sensitive server information
• Server details
• Error messages
• Timing information
• Injection attacks
• Untrusted data
• Sanitization
• Injection types
• SQL injection
• HTML injection
• Code injection
• Prototype pollution
• File path injection

